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It is shown that the chaotic orbits in the saturated states of nonlinear three-wave coupling can be controlled
by applying a new resonance, via a small sinusoidal anti-Stokes wave, to the system. For a given set of linear
frequency mismatch and growth-damping parameters, any desired periodic orbit can be achieved by a proper
adjustment of the amplitude of the control wave. This method is illustrated by numerical simulations.@S1063-
651X~96!08106-8#

PACS number~s!: 05.45.1b, 52.35.Mw, 42.65.Sf

Nonlinear three-wave coupling is of general interest in
many branches of physics such as nuclear fusion, space geo-
physics, astrophysics, nonlinear optics, and fluid mechanics.
For example, it causes the stimulated scattering and anoma-
lous absorption of laser beams in inertial fusion experiments
@1# and appears in the plasma edge region of a magnetic
fusion device during radio-frequency heating experiments
@2#; it is responsible for the generation and modulation of
plasma waves in the planetary magnetosphere and solar wind
@3#; it might be the origin of pulsar eclipse@4#; it provides
tunable lasers based on optical parametric oscillators@5#; it
arises on shear flows and in interactions between interfacial
and gravity waves in hydrodynamics@6#.

Chaos is very common in nature and in man-made de-
vices. Recently, there has been a growing interest in devel-
oping methods to control chaos in nonlinear dynamical sys-
tems. In this paper, we present a method of controlling chaos
in nonlinear three-wave coupling.

One of the first approaches introduced to eliminate chaos
and achieve a desired behavior in a dynamical system in-
volved large perturbations which completely changed its dy-
namics@7,8#. Later, it was suggested that the chaotic behav-
ior of a system may be controlled by applying small time-
dependent perturbations without creating new orbits that
have very different properties from the existing ones@9#.
This idea is based on the fact that a chaotic attractor typically
has embedded in it an infinite number of unstable periodic
orbits @10#. This inherent property of chaotic attractor gives
us the flexibility to choose the most desirable periodic orbit
among a large number of periodic orbits in the attractor, by
introducing a small perturbation to an arbitrary accessible
parameter of the system.

The method of applying small perturbations in chaotic
systems to obtain a desired regular asymptotic state has been
applied to a variety of physical applications. In an experi-
ment consisted of a gravitational buckled amorphous magne-
toelastic ribbon, chaotic behavior was controlled by using an
external magnetic field@11,12#. The spin-wave instability
pumped by microwave radiation can be suppressed by small
time-dependent modulations in the biasing magnetic field
@13#. Control of chaos displayed by the thermal convection

in which the heating rates exceed a certain threshold was
performed via small adjustments of the heating rate@14#; the
theoretical modeling of this experiment based on the well-
known Lorenz equations@15# is in good agreement with the
experimental results. The targeting of orbits to a desired state
was shown to be particularly simple when the system can be
described by a one-dimensional map or even when one wants
to reach a stationary state in a three-dimensional flow
@16,17#. The possibility of using chaos to transmit informa-
tion encoding a message in the controlled symbolic dynam-
ics of a chaotic oscillator was demonstrated recently@18#.

The simplest model for describing the temporal dynamics
of resonant nonlinear coupling of three waves can be ob-
tained assuming that the nonlinearity is sufficiently weak so
that only quadratic terms in the wave amplitudes need to be
considered. Moreover, the waves may be assumed mono-
chromatic, with the electric fields written in the
form Ea(x,t)5(1/2)Aa(x,t)expi(ka•x2vat)1c.c. ~where
a51,2,3) and the time scale of the nonlinear interactions is
much longer than the periods of the linear~uncoupled! waves
@i.e., v21!A(] tA)

21]. In order for three-wave interactions
to occur, the wave frequenciesva and wave vectorska must
satisfy the resonant conditions

v3'v12v2 , k35k12k2 . ~1!

Under these circumstances, the nonlinear temporal dynamics
of the system can be governed by the following set of three
first-order autonomous differential equations written in terms
of the complex slowly varying wave amplitude@19–21#:

Ȧ15n18A11A2A3 , ~2!

Ȧ25 idA21n28A22A1A3* , ~3!

Ȧ35n38A32A1A2* , ~4!

where the dot denotes differentiation with respect to the
timelike variable t5xt, x is a characteristic frequency;
d5(v12v22v3)/x is the normalized linear frequency mis-
match andna85na /x give the linear wave behaviors on the
long time scale~i.e., either growth or damping, depending on
the sign ofna). We assume here that the waveA1 is linearly
unstable (n1.0) and the other two waves,A2 andA3 , are
linearly damped (n285n38[2n,0) and henceforth we set
x5n1 so thatn1851 @19–21#.
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By fixing the parameterd and varyingn, the system~2!–
~4! exhibits a great variety of asymptotic behaviors: diver-
gence, fixed point, limit cycle, and strange attractor@19–21#.
The transitions from limit cycles to strange attractors in the
system~2!–~4! follow two different routes depending on the
value ofd and n: ~i! the limit cycles undergo a cascade of
period-doubling bifurcations@19,20#; ~ii ! the stable periodic
cycles abruptly take over the place of the chaotic orbits via
the intermittency route@21,22#. Figure 1~a! shows an ex-
ample of a chaotic time series ofuA1(t)u evolved via period-
doubling bifurcations@19,20#. Figure 2~a! shows an example
of a chaotic time series ofuA1(t)u evolved via intermittency
@21#.

We discuss next a method of controlling the chaotic solu-
tions of Eqs.~2!–~4!. For resonant four-wave coupling pro-
cesses involving two wave triplets, it is known that the pres-
ence of the second triplet having two waves in common with
the first can increase or stabilize the instability of the first

triplet @23#. This idea was extended to resonant four-wave
interactions involving negative-energy modes; it was shown
that the weaker triplet can be stabilized by the stronger triplet
against the explosive instability@24#. We apply the above
concepts to control chaos in three-wave coupling. Let us de-
note the pump wave by the subscript 1, the idler wave by the
subscript 2, and the Stokes wave by the subscript 3. This
triplet satisfies the resonant condition~1! and evolves ac-
cording to Eqs.~2!–~4!. We now introduce a new resonance
into the system through the addition of an anti-Stokes wave,
E4(x,t)5(1/2)A4(x,t)expi(k4•x2v4t)1c.c., which in ef-
fect adds a second triplet into the system with (v4 ,k4) obey-
ing the following resonant conditions

v45v11v2 , k45k11k2 . ~5!

Hence, the system now consists of two wave triplets satisfy-
ing the two sets of resonant conditions given by Eqs.~1! and

FIG. 1. The plot of ~a! the chaotic time seriesuA1(t)u for
e50, ~b! the controlled periodic time seriesuA1(t)u for e51023,
~c! the behavior of the maximum Lyapunov exponentl for e50
and 1023. The linear frequency mismatch and growth-damping pa-
rameters ared52 andn515.

FIG. 2. The plot of ~a! the chaotic time seriesuA1(t)u for
e50, ~b! the controlled periodic time seriesuA1(t)u for e51023,
~c! the behavior of the maximum Lyapunov exponentl for e50
ande51023. The linear frequency mismatch and growth-damping
parameters ared55 andn521.61.
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~5!, respectively. The amplitude of thiscontrolwave is kept
small so that uA4u[ueu!uA1,2,3u, and constant so that
de/dt50. In the presence of thecontrolwave, Eqs.~2!–~4!
are modified to@23,24#

Ȧ15A11A2A32eA2* , ~6!

Ȧ25 idA22nA22A1A3*1eA1* , ~7!

Ȧ352nA32A1A2* . ~8!

For a given region of the parameter space (d,n) where the
solution of Eqs.~6!–~8!, in the absence of the control wave,
is chaotic we optimize the influence of the new resonance~5!
in the system by adjusting thecontrolparametere in order to
target the system to a desired periodic orbit. This method of
control works in both chaotic regions evolved from either
period-doubling bifurcation or intermittency. Figures 1~b!
and 2~b! show the period-1 orbit, controlled withe51023.
The characterization of order and chaos is performed by cal-
culating the maximum Lyapunov exponent of the time series
@25#, as shown in Figs. 1~c! and 2~c!. Figures 1~c! and 2~c!
show that in the chaotic state (e50) l tends to a positive
value as t→`; whereas in the controlled regular state
(e51023) l tends to zero ast→`.

In addition to the ability to bring a given chaotic orbit to
a desired periodic orbit, this method of controlling chaos also
enables us to choose the time interval during which a desired
ordered state is preferred. Figures 3~a! and 4~a! illustrate the
above two features in the same graph, for transition to chaos
via period-doubling bifurcation and intermittency, respec-
tively. In the time interval 0,t,t1 , the solutions are cha-

otic (e50); the associated strange attractors are plotted in
Figs. 3~b! and 4~b!. At t5t1 a control wave with amplitude
e51023 is applied and maintained untilt<t2; in the inter-
val t1,t,t2 the orbits are periodic with period 1, as seen
in the phase portraits in Figs. 3~c! and 4~c!. At t5t2 , the
control amplitude is changed toe51027 and the periodic
solutions are modified from period 1 to period 4 for Fig.
3~d!, and from period 1 to period 2 for Fig. 4~d!.

This method of controlling chaos is fairly simple to carry
out in nonlinear three-wave experiments in the laboratory.
Once the frequencies and wave vectors of the pump (A1) and
idler (A2) waves are known, we can apply a small sinusoidal
wave having the frequency and wave vector of the anti-
Stokes modeueusin(k4•x2v4t) to target the chaotic state of
the system to a desired periodic orbit by varying the control
parameterueu appropriately. Our method is based on the fact
that the strange attractors, as shown in Figs. 3~b! and 4~b!,
have embedded in them an infinitive number of unstable pe-
riodic orbits @10#. Following the innovative idea first pro-
posed by Ott, Grebogi, and Yorke@9#, we have the freedom
to choose the most desirable periodic orbit by introducing a
small control waveE4 to the system.

The system~6!–~8! can be targeted toany desired peri-
odic orbit through a proper adjustment of the control param-
eter e. For example, for the chaotic state generated by the
period-doubling route@19,20#, our method can stabilizeany

TABLE I. List of periodic orbits stabilized by a small control
wave.

Orbit 20 21 22 23

e 1023 1024 1027 531028

uA1umax 33.3 37.8 48.5 49.6

FIG. 3. The plot of~a! the cha-
otic time series uA1(t)u with
e50 for 0,t,t1 , e51023 for
t1,t,t2, and e51027 for
t2,t; and the corresponding
phase portraits for e50 ~b!,
e51023 ~c! ande51027 ~d!. The
linear frequency mismatch and
growth-damping parameters are
d52 andn515.
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orbit with period 2n (n50,1,2,. . . ). Table I shows a list of
periodic orbits stabilized from the strange attractor of Fig.
3~b!, which was obtained as follows. We raise the control
parameter until the system stabilizes. Above the threshold for
stabilization, as we increase the control parameter the suc-
cessive orbits with period 2n,2n21, . . . are stabilized, as
shown in Table I. Note, from Table I, that asn increases the
maximum wave amplitude of the pump waveuA1umax also
increases. This implies that a periodic state with a larger
wave amplitude can be achieved by targeting to an orbit with
a highern number. The upper limit ofuA1u max attainable is

determined by the boundary of the attracting basin as seen in
Fig. 3~b!.

In conclusion, we have shown that the chaotic behaviors
of nonlinear three-wave interactions can be controlled via the
introduction of a new resonance to the system, by applying a
small sinusoidal anti-Stokes wave. This method provides the
flexibility of choosing a desired periodic orbit as well as a
desired controlled time interval. We believe that this is a
simple and effective method of controlling chaos in nonlin-
ear three-wave experiments in plasma physics, nonlinear op-
tics, and fluid mechanics.
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