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Controlling chaos in nonlinear three-wave coupling
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It is shown that the chaotic orbits in the saturated states of nonlinear three-wave coupling can be controlled
by applying a new resonance, via a small sinusoidal anti-Stokes wave, to the system. For a given set of linear
frequency mismatch and growth-damping parameters, any desired periodic orbit can be achieved by a proper
adjustment of the amplitude of the control wave. This method is illustrated by numerical simulp8&083-
651X(96)08106-9

PACS numbgs): 05.45+b, 52.35.Mw, 42.65.Sf

Nonlinear three-wave coupling is of general interest inin which the heating rates exceed a certain threshold was
many branches of physics such as nuclear fusion, space geperformed via small adjustments of the heating fa#; the
physics, astrophysics, nonlinear optics, and fluid mechanicgheoretical modeling of this experiment based on the well-
For example, it causes the stimulated scattering and anominown Lorenz equationfsl5] is in good agreement with the
lous absorption of laser beams in inertial fusion experiment§Xperimental results. The targeting of orbits to a desired state
[]_] and appears in the p|asma edge region of a magnetwas shown to be particularly simple when the system can be
fusion device during radio-frequency heating experimentglescribed by a one-dimensional map or even when one wants
[2]; it is responsible for the generation and modulation ofto reach a stationary state in a three-dimensional flow
plasma waves in the planetary magnetosphere and solar wiid6,17. The possibility of using chaos to transmit informa-
[3]; it might be the origin of pulsar eclipgel]; it provides tion encoding a message in the controlled symbolic dynam-
tunable lasers based on optical parametric oscilld®sit  iCS of a chaotic oscillator was demonstrated recefitg|.
arises on shear flows and in interactions between interfacial The simplest model for describing the temporal dynamics
and gravity waves in hydrodynami¢s]. of resonant nonlinear coupling of three waves can be ob-

Chaos is very common in nature and in man-made detained assuming that the nonlinearity is sufficiently weak so
vices. Recently, there has been a growing interest in devethat only quadratic terms in the wave amplitudes need to be
oping methods to control chaos in nonlinear dynamical sysconsidered. Moreover, the waves may be assumed mono-
tems. In this paper, we present a method of controlling chacghromatic, with the electric fields written in the
in nonlinear three-wave coupling. form E,(x,t)=(1/2)A.(x,t)exp(k, x—w,t)+c.c. (where

One of the first approaches introduced to eliminate chaog=1,2,3) and the time scale of the nonlinear interactions is
and achieve a desired behavior in a dynamical system inmuch longer than the periods of the linéancoupled waves
volved large perturbations which completely changed its dyfi.e., o~ *<A(,A) "']. In order for three-wave interactions
namics[7,8]. Later, it was suggested that the chaotic behavio occur, the wave frequencies, and wave vectork,, must
ior of a system may be controlled by applying small time-satisfy the resonant conditions
dependent perturbations without creating new orbits that
have very different properties from the existing ori&3.

This idea is based on the fact that a chaotic attractor typicallyynqer these circumstances, the nonlinear temporal dynamics
has embedded in it an infinite number of unstable periodicy e system can be governed by the following set of three

orbits[10]. This inherent property of chaotic attractor gives first_order autonomous differential equations written in terms
us the flexibility to choose the most desirable periodic orbityf e complex slowly varying wave amplitud&9—21]:
among a large number of periodic orbits in the attractor, by

W3~ W1~ Wy, kgzkl_kz. (1)

introducing a small perturbation to an arbitrary accessible A1=V1A1+A2A3, 2
parameter of the system. _

The method of applying small perturbations in chaotic Ay =i6A+ vy A —ALAY, 3
systems to obtain a desired regular asymptotic state has been ]
applied to a variety of physical applications. In an experi- Az=1iAz;—AAS, (4)

ment consisted of a gravitational buckled amorphous magne- ) o .
toelastic ribbon, chaotic behavior was controlled by using afvhere the dot denotes differentiation with respect to the
external magnetic field11,12. The spin-wave instability timelike variable r=xt, x is a characteristic frequency;
pumped by microwave radiation can be suppressed by smafi= (@1~ w,—w3)/x is the normalized linear frequency mis-
time-dependent modulations in the biasing magnetic fieldnatch andv,=wv,/x give the linear wave behaviors on the
[13]. Control of chaos displayed by the thermal convectionlong time scaldi.e., either growth or damping, depending on
the sign ofv,). We assume here that the wakeg s linearly
unstable ¢;>0) and the other two wave#,, and A5, are
*Present address: Departamento dsida, Universidade de Fed- linearly damped ¢;=v3=—»<0) and henceforth we set
eral do ParanaC.P. 19081, 81531-990 Curitiba PR, Brazil. x= vy so thaty;=1[19-21.

1063-651X/96/541)/170(5)/$10.00 54 170 © 1996 The American Physical Society



54 CONTROLLING CHAOS IN NONLINEAR THREE-WAVE COUPLING 171

(a) 60 : : (a) 90
£=0.0 80
50 | ] o
40 1 60 I
50 |
A o A1 = gl
20 20 B | \‘
20 ll e
10 ¢ ] 10 i | M‘,
! . 0 A X
% 10 20 30 a0 50 0 100 200 300 400
T
b
(b) 60 . . = ( ) 90
e=10 80 e=10"
50 ] o
40 1
IA1I 30 |A1|
20
10
0 0 10 2‘0 30 40 50 0 100 200 300 400
T
©) .. ©)
10
----- €=0.0 o ----—- £=0.0
. —e=10" 10 e=10"
L S o' b ]
-2
107* 10
7L 7‘*10“g
107 107
- 10°
10 10
3 -7 " N
1070 10° 10° 10° BT 10° 10° 10°
T T
—FIGB 1'h The plcilt of(@ the chaotic time serie$A1(_r)| fca)r FIG. 2. The plot of(a) the chaotic time serie$A,(7)| for
=0, (b) the controlled periodic time serig8y(7)| for e=10"°,  _q (b) the controlled periodic time seriéf\;(7)| for e=1073,

(c) the k;ehavio_r of the maximum Lyapunov exponanfor e=0 () the pehavior of the maximum Lyapunov exponanfor e=0
and 10°°. The linear frequency mismatch and growth-damping pa-gng ¢=10-3. The linear frequency mismatch and growth-damping
rameters aré=2 and»=15. parameters aré=>5 andv=21.61.

By fixing the parametes and varyingy, the systen(2)—  triplet [23]. This idea was extended to resonant four-wave
(4) exhibits a great variety of asymptotic behaviors: diver-interactions involving negative-energy modes; it was shown
gence, fixed point, limit cycle, and strange attra¢i®#—21.  that the weaker triplet can be stabilized by the stronger triplet
The transitions from limit cycles to strange attractors in theagainst the explosive instabiliy24]. We apply the above
system(2)—(4) follow two different routes depending on the concepts to control chaos in three-wave coupling. Let us de-
value of § and v: (i) the limit cycles undergo a cascade of note the pump wave by the subscript 1, the idler wave by the
period-doubling bifurcation§19,2Q; (ii) the stable periodic subscript 2, and the Stokes wave by the subscript 3. This
cycles abruptly take over the place of the chaotic orbits vidriplet satisfies the resonant conditi¢h) and evolves ac-
the intermittency routd21,22. Figure X&) shows an ex- cording to Eqs(2)—(4). We now introduce a new resonance
ample of a chaotic time series [o%,(7)| evolved via period-  into the system through the addition of an anti-Stokes wave,
doubling bifurcationg19,20. Figure Za) shows an example E4(X,t)=(1/2)A4(x,t)exp(k,-X—w4t) +c.c., which in ef-
of a chaotic time series ¢A\;(7)| evolved via intermittency fect adds a second triplet into the system widh, (k,) obey-

[21]. ing the following resonant conditions
We discuss next a method of controlling the chaotic solu-
tions of Egs.(2)—(4). For resonant four-wave coupling pro- W= w1t wy, Ki=ki+ks,. (5)

cesses involving two wave triplets, it is known that the pres-
ence of the second triplet having two waves in common withHence, the system now consists of two wave triplets satisfy-
the first can increase or stabilize the instability of the firsting the two sets of resonant conditions given by E@sand
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(5), respectively. The amplitude of thcontrol wave is kept  otic (e=0); the associated strange attractors are plotted in
small so that |A,=|e|<|A;,4, and constant so that Figs. 3b) and 4b). At 7=, a control wave with amplitude
de/d7=0. In the presence of theontrol wave, Eqs(2)—(4) =103 is applied and maintained untt 7,; in the inter-

are modified td23,24] val 7, <7<, the orbits are periodic with period 1, as seen
in the phase portraits in Figs(@ and 4c). At 7=1,, the
A1=A1+A2A3—6A§ 6) control amplitude is changed te=10 ' and the periodic

solutions are modified from period 1 to period 4 for Fig.

. 3(d), and from period 1 to period 2 for Fig(d).
A,=16A,— vA,—A1AL + €AY, (7) This method of controlling chaos is fairly simple to carry
out in nonlinear three-wave experiments in the laboratory.
Once the frequencies and wave vectors of the puMp and
idler (A,) waves are known, we can apply a small sinusoidal
wave having the frequency and wave vector of the anti-

For a given region of the parameter spade) where the  Stokes modée|sin(k,- X— w,t) to target the chaotic state of
solution of Egs(6)—(8), in the absence of the control wave, the system to a desired periodic orbit by varying the control
is chaotic we optimize the influence of the new resondBfe parametefe| appropriately. Our method is based on the fact
in the system by adjusting thentrol parametek in orderto  that the strange attractors, as shown in Figb) and 4b),
target the system to a desired periodic orbit. This method ofayve embedded in them an infinitive number of unstable pe-
control works in both chaotic regions evolved from eitherriodic orbits [10]. Following the innovative idea first pro-
periOd'dOUb”ng bifurcation or intermittency. Flgure$b)l posed by Ott, Grebogi’ and Yori{@]’ we have the freedom
and 2b) show the period-1 orbit, controlled with=10".  to choose the most desirable periodic orbit by introducing a
The characterization of order and chaos is performed by cakmall control waveE,, to the system.
culating the maximum Lyapunov exponent of the time series  The system(6)—(8) can be targeted tany desired peri-
[25], as shown in Figs. (t) and Zc). Figures 1c) and 2¢)  odic orbit through a proper adjustment of the control param-
show that in the chaotic state£0) N tends to a positive etere. For example, for the chaotic state generated by the
value ast—; whereas in the controlled regular state period-doubling rout¢19,20|, our method can stabilizany
(e=103) \ tends to zero ag— .

In addition to the ability to bring a given chaotic orbit to
a desired periodic orbit, this method of controlling chaos alsd/3"¢:

A3: - VAS_ AlAz . (8)

TABLE |I. List of periodic orbits stabilized by a small control

enables us to choose the time interval during which a desiregrbit 20 o1 52 >3
ordered state is preferred. Figurgg)3and 4a) illustrate the

above two features in the same graph, for transition to chaog 1073 1074 1077 5x10°8
via period-doubling bifurcation and intermittency, respec-|A, | nax 33.3 37.8 485 49.6

tively. In the time interval 8<7<<7;, the solutions are cha-
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orbit with period 2' (n=0,1,2,...). Table | shows a list of determined by the boundary of the attracting basin as seen in
periodic orbits stabilized from the strange attractor of Fig.Fig. 3(b).

3(b), which was obtained as follows. We raise the control In conclusion, we have shown that the chaotic behaviors
parameter until the system stabilizes. Above the threshold fosf nonlinear three-wave interactions can be controlled via the
stabilization, as we increase the control parameter the sugntroduction of a new resonance to the system, by applying a
cessive orbits with period "22""%, ... are stabilized, as small sinusoidal anti-Stokes wave. This method provides the
shown in Table I. Note, from Table I, that asincreases the flexibility of choosing a desired periodic orbit as well as a
maximum wave amplitude of the pump waj®;| . also  desired controlled time interval. We believe that this is a
increases. This implies that a periodic state with a largesimple and effective method of controlling chaos in nonlin-
wave amplitude can be achieved by targeting to an orbit withear three-wave experiments in plasma physics, nonlinear op-
a highern number. The upper limit ofA;| max attainable is  tics, and fluid mechanics.
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